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ABSTRACT

The operational effectiveness of airborne laser hydrography
systems, considering the optical environment of the coastal waters
of Oregon, Washington, and the Gulf Coast stateq,is examined.

The best times of the year are predicted for conducting laser
bathymetry, considering the temporal and spatial variability of
optical properties due to seasonal effects, and charts of season-
ally averaged optical measurements are given. Original formulas
to convert beam attenuation coefficients and Secchi depth measure-
ments to irradiance attenuation coefficients are included. The
number of irradiance attenuation lengths to the bottom depth (Kd4)
are used as the indicator to estimate areas where laser hydrog-
raphy systems would be successful and are shown by season and
region. The conclusionsof this thesis are that airborne laser
v hydrography is not practical in the coastal waters of Oregon

and Washington, would be practical in limited areas of the western

Gulf Coast, and would be very practical in the eastern Gulf Coast

area. Along the eastern Gulf Coast a 38,800 nmi2 area, delineated

by a K& = 4 contour, is judged surveyable by laser.
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I. INTRODUCTION

A. HYDROGRAPHY AND THE DEVELOPMENT OF LASER BATHYMETRY

Hydrography has been defined as, "that science which deals
with the measurement and description of the physical features
of the oceans, seas, lakes, rivers, and other waters, and their
adjoining coastal areas, with particular reference to their use
for navigational purposes" (U.S. Naval Oceanographic Office,
1966) . Hydrographic surveys are used to produce nautical charts
and related information which satisfy navigational, engineering
and marine scientific needs and contribute to national goals
such as ocean resource management and national defense. Howewver,
these products may become quickly outdated, and new surveys are
required because of changes caused by such natural processes as
winds, tides, earthquakes and because of man-made changes result-
ing from construction of ports, channels, breakwaters, and
pipelines. New surveys might also be needed because of changing
requirements, for example those associated with deep draft
tankers. Since the 1930s most hydrographic surveys have been
performed by ships equipped with sonic depth sounders to obtain
bathymetric data.

A new method for hydrographic surveying, airborne laser
bathymetry, was shown to be a fast reliable technique to obtain

bathymetric data by the U.S. Naval Oceanographic Office (NAVOCEANO)

with their Pulsed Light Airborne Depth Sounder (PLADS) in 1969
(Bright, 1973). The PLADS system used a frequency-doubled

Neodymium Yttrium Aluminum Garnet (Nd:YAG) laser (Rattman and

11
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Cunningham, 1969). NAVOCEANO's interest in such a system

resulted from immediate requirements stemming from the Vietnam

War for better charts of shallow coastal waters within range

T

of enemy controlled territory (Bright, 1973).

Since that time further work has been done by NAVOCEANO,
NASA, National QOcean Survey (NOS), and the Australian Weapons
Research Establishment. 1In 1974 NAVOCEANO tested a NASA-owned
neon laser and in 1975 obtained a frequency-doubled Nd:YAG
laser for their Coastal Aerial Photo-Laser Survey (CAPS) system
(Crandall, 1976). 1In 1977 NASA,with DOD and NOS sponsorship,
began testing their Airborne QOceanographic Lidar (AOL) as a
hydrographic data acquisition system (Guenther and Enabnit,
1978) . The success of these tests.influenced the Naval
Oceanographic Research and Development Agency (NORDA) to place
their Hydrographic Airborne Laser Sounder (HALS) in the.procure-
ment stage in 1978 and influenced NOS to implement a development
plan for a more sophisticated system in 1979. The Australian
Weapons Research Establishment has built two systems, one for
research and one for operational surveys (National Ocean Survey,

1979).

B. MAJOR BENEFITS OBTAINABLE FROM LASER BATHYMETRY
The National Ocean Survey (1979) has evaluated airborne

laser hydrography and has found four major benefits realizable

over ship/sonar hydrography with this technique: cost savings,
manpower savings, capability of increased production, and im-

provement in the quality of marine charts.

12




The NOS (1979) study showed that projected cost savings

would be achieved through the speed with which an area could

be surveyed. Figure 1 shows the costs per unit area as a
function of area surveyed annually. The three curves represent
amortized nonrecurring capital cost, operating cost, and total
cost. The constant line approximates the cost of launch/sonar
hydrography at $2730 per square nautical mile. The comparison
of the projected laser cost per unit area of $438/nmi2 to the
launch/sonar cost per unit area of $2730/nmi2 for a fully
utilizéd system, 2000 nmizlyr, indicates that laser surveys
would cost one-sixth of sonar surveys.

The NOS (1979) study also examined manpower and production.
NOS concluded that manpower effectiveness of laser over launch/
sonar would be five-to-one. Projected production for each NOS
airborne laser system would be approximately 2000 nmi2 per
annum.

Finally, the NOS (1969) study suggested that the guality
of marine charts would be improved by laser systems 'because of
significantly increased spatial density and greater uniformity
of distribution of soundings compared to sonar. The proposed
NOS laser system was to collect 400-600 depth measurements per
second with an average distribution of one per 20 mz, yielding
measurements 4.5 m apart in all directions. This would be
300 times the number of soundings per unit area of typical

ship/sonar surveys. The increased density and more uniform

distribution would provide a more representative chart.

13
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C. PURPOSE OF THE THESIS

NAVOCEANO and NASA have shown that laser bathymetry systems
may be practical and reliable. NOS has shown that major bene-
fits for hydrography may be possible with a laser system. The
purpose of this thesis was to determine the most effective use
of airborne laser hydrography systems considering the marine
environment. Specifically, the gquestions to be answered are:
which areas of U.S. coastal waters may be most effectively
surveyed using airborne laser bathymetry and at what times of
the year? This study was confined to the Gulf and West Coasts
because major studies have already been conducted by NOS for

the East Coast (Enabnit, 1979).
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II. ATTENUATION OF LASER BEAM POWER AS THE PARAMETER GOVERNING

CTIVENESS O E Y

A. INTRODUCTION

Laser penetration of ocean water is dependent on the optical
properties of sea water. This thesis examines the optical prop-
erties which can be used to delineate those ocean areas which
might be surveyed advantageously by laser bathymetry. Definitions
and terms used to describe optical properties of sea water are
those recommended by the Committee on Radiant Energy in the Sea

and given by Jerlov (1976).

B. OPTICAL CLASSIFICATION OF OCEAN WATERS

Jerlov (1976) has classified ocean waters in terms of the
- spectral transmittance of downward irradiance at high solar
altitudes (Fig. 2). The Jerlov coastal water types 1-9 are
characterized by increasingly higher amounts of yellow substance.
Water types of decreasing irradiance transmittance indicate a
spectral shift in the transmittance maximum toward longer wave-
lengths. Selective absorption by particles and yellow substance
causes greater absorption at the shorter wavelengths and shifts
the transmittance maximum from 470 nm, the blue region, for
clear ocean type I water to 550 nm, the green'region, for
coastal type 7 water. Figure 3 is a similar graph of Jerlov's
water types but gives instead of transmittance the irradiance
attenuation coefficient (K) for downwelling daylight as a

function of wavelength.

15




C. TRANSMISSION WINDOWS AND LASER TYPES

The preference for a particular type of laser to be used
for laser bathymetry depends upon the wavelength of maximum
transmission. The transmission window for Jerlov's coastal
water types 1l-7 is approximately 510-580 nm (Figs. 2 and 3).
Laser types that have operating wavelengths within that spectral
band are: the frequency-doubled Nd:YAG laser (useg in the
proposed NORDA HALS and NOS systems), which operates at 532 nm;
the neon laser (used in NASA's AOL), which operates at 540 nm;
the argon laser, which operates at 514 nm; and the dye laser,
which is tunable over the blue-green spectrum (Ferguson, 1975).
The frequency-doubled Nd:YAG is preferred by NORDA and NOS for
two primary reasons: (1) its high peak pulse power and high

pulse rates, and (2) its small size and weight (NORDA, 1978).

D. THE PRINCIPLE OF LASER BATHYMETRY

The technique of using a pulsed laser to measure water
depths remotely can be explained with the aid of Figure 4. A
short pulse of light is emitted from an airborne laser. The
pulse of energy travels at the velocity of light and impinges
upon the surface of the water. Approximately 3% of this energqgy
is specularly reflected from the air/water interface and inter-
cepted by the aircraft receiver. Half of the time difference
between the initial laser pulse and this surface reflection
yields the aircraft altitude. The remaining 97% of the laser
energy is transmitted into the water, wherein its velocity is
decreased by about 25%. (The transmission across the air/water
interface is dependent on the angle of incidence, on polariza-
tion, and on sea state conditions. The value of 97% is an

16
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average value for angles of incidence between 0° ana 45° in
calm seas [wWitt, 1979]. In addition the signal is
exponentially attenuated by absorption and scattering within
the water column. If the signal is of sufficient intensity,
it will be reflected from the water/sediment interface and be
detected at the receiver. The time difference between the
surface and bottom-sediment reflections is used to determine
the water depth.
E. THE IMPORTANCE OF THE SYSTEM ATTENUATION COEFFICIENT IN THE

LASER SIGNAL EQUATION

A signal equation for a laser pulse transmitted from an
airborne platform to the ocean floor may be given as follows
(Avco Everett Research Laboratory, Inc., 1975):

—~ya—2a;h_-2vyad
or Pe R(l=-p)e l'e ACTSB

B
n(h+%)2 n2

P = Received peak power [W]
P = Transmitted peak power [W]

R = Bottom reflectivity

o} = Surface reflectivity

= Atmospheric attenuation [km'll

Y = System attenuation coefficient of sea water [m'll

A = Area of collector [m2]
T = System efficiency

h = Aircraft altitude [km]
| = Water depth [m]

n = Index of refraction of sea water

17




This equation shows that the received signal is a function of
environmental and system parameters. However, for a given appro-
priately designed and operated laser system, the major operational
limitation is due to the environmental parameters. A simplified

signal equation that indicates this is:

—a) o—22;h _-2vyd
P.p = SR (1-ple “"1" e

where S = (PtACTSB)/[w(h+d/n)2 n2]

For an aircraft altitude of 609 m (2000 ft), a water depth
of 10 m, and representative values for the system and environ-

mental parameters P_ = 30 kW, R = 15%, p = 2%, a, = 0.12/km,

t
Yy = 0.2/m, Ac = 0.073 mz, T

1

s = 1-27%, and n =1.33 (Avco Everett
Research Laboratory, Inc., 1975) the following values are
obtained:

S =1.32x 10°°W, R =0.15, 1-p = 0.98, e 2310 2 g g6,
-2yd 8

= 0.02, P = 3.33 x 10° °wW.

e r

The system parameter, S, is fixed for a given system or survey
operation. Therefore, the ultimate environmental parameter is
the product of the system attenuation coefficient and water

depth (vyd) since it dominates all other terms.

F. THE IRRADIANCE ATTENUTATION COEFFICIENT AS AN APPROXIMATION
witt (1979) , showed that the system attenuation co-
efficient (y) may best be approximated by the irradiance attenua-
tion coefficient (K), for downwelling light, an apparent optical
oceanographic property readily measured in situ. This approxima-

tion was further confirmed by Krumboltz (1979) in a series of

18




tests for NORDA's HALS system. The coefficient K best approxi-
mates Y because after traversing several attenuation lengths,
the photons of a laser beam undergo multiple scattering,
spreading the shape of the beam and ultimately giving it an
asymptotic radiance distribution equivalent in shape to the
irradiance distribution of downwelling daylight.

witt (1979) and Krumboltz (1979) have shown that
receiver field of view (FOV) and altitude affect the accuracy
of this approximation. Figure 5 shows the variation of y as
a function of FOV and receiver altitude at one test site.
At a receiver altitude of 500 ft, vy = K with a FOV of 80 mrad,
but at 1500 ft, vy = K with a FOV of 40 mrad. The better approxi-
mation at higher receiver altitudes is due to the greater laser
divergence with distance. The NASA AOL system had a FOV of
5-20 mrad (Avco Everett Research Laboratory, Inc., 1975), the
NORDA HALS system a FOV of 0-30 mrad (Naval Oceanographic
Research and Development Agency, 1978), and the proposed NOS
system a FOV of 0-50 mrad (Avco Everett Research Laboratory,
Inc., 1978). Figure 5 indicates that for the NASA AOL, the
NORDA HALS, and the projected NOS systems the approximation
is good for airborne laser bathymetry systems operating at
500 ft or higher but should be used with discretion at lower
altitudes.
G. IRRADIANCE ATTENUATION LENGTHS AND PERFORMANCE OF LASER

BATHYMETRY SYSTEMS

The performance of laser bathymetry systems may be specified
using irradiance attenuation lengths, L, which are the reciprocals

of irradiance attenuation coefficients, i.e., L = 1/K, the

19
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distance in which the irradiance decreases by a factor l/e.
The number of irradiance attenuation lengths to the bottom
depth (d/L = Kd) that various laser bathymetry systems can
attain or are projected to attain is shown in Fig. 6.

The NASA AOL system has achieved two attenuation lengths
in the daytime and three at night (Enabnit, 1979), the NORDA
HALS system was contracted to achieve 3.2 (Houck, 1979), and
the proposed NOS system has a goal of four attenuation lengths
(Enabnit, 1979). A higher value can be attained at night due
to the lack of background noise caused by sunlight. It must
be noted that in most studies of laser bathymetry, beam attenua-
tion lengths have been used in describing the capability of
laser systems, even though Krumboltz
(1979) has  shown that the system attenuation coefficient was
better approximated by the irradiance attenuation coefficient.
Che problem resulting from the use of beam attenuation lengths
is apparent from Figure 5.) Thus some investigators have
reported attenuation lengths five times greater than those given

here (Guenther and Enabnit, 1978).

H. NATURE OF THE PROBLEM
The first thesis objective was to determine where in U.S.
coastal waters laser bathymetry can be effective, using the
irradiance attenuation length as the best indicator of the
expected performance of airborne laser bathymetry systems.
The second objective was to predict the best times of the
year for using laser bathymetry. The optical properties of

coastal waters may have temporal and spatial variability due

20




to seasonal changes in currents, winds, runoff, upwelling and
other physical processes, as well as to biological activity.
Other effects of shorter duration and more limited extent are
storms, plankton blooms, tides, and man-made pollutants. Only
the temporal and spatial variability due to seasonal effects
were investigated. These are summarized by figures of seasonally

plotted optical data.

21




III. DATA COLLECTION AND PROCESSING

A. LIMITATIONS OF MARINE OPTICAL DATA IN COASTAL WATERS
One of the major tasks in this study was the collection of

marine optical data. Optical data for coastal waters are
i scarce; this is especially true for irradiance attenuation data.
The most common type of optical measurement, the Secchi depth
(zs). is usually obtained by marine biologists studying the
: euphotic zone. The next most common type of optical measure-
ment for the Gulf Coast area is beam attenuation. Irradiance
attenuation measurements, the optical data actually sought,
& are almost nonexistent for U.S. coastal waters. This scarcity

of irradiance attenuation data required the use of Secchi depths

and beam attenuation data. Other marine optical measurements

such as volume scattering and turbidity measurements such as
those recorded in Jackson or Formazin turbidity units were not
considered. The in situ data sources used are listed in
Appendix A. A limiting condition on all optical data used was

that the water depth at the ocean station where the optical

measurements were made had to be less than 200 meters. Since
laser bathymetry systems will probably be limited to approxi-
mately four irradiance attenuation lengths (Enabnit, 1979),
(80 m depth for a K of 0.05 m 1), 200 meters was considered
more than sufficient.

Satellite data may be indicative of the optical quality of
coastal waters. Therefore, selected Landsat and NOAA-3

satellite imagery were qualitatively examined for turbidity

patterns that correlated with in situ beam attenuation data.
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Another necessary task was to find conversion formulas to
convert Secchi depths (Zs) and beam attenuation coefficients (C)
to irradiance attenuation coefficients (K), because irradiance
attenuation length was the chosen operational parameter. A
related problem arose due to the spectral dependency of optical
measurements. The optical data would be most useful if it were
obtained for a wavelength of approximately 532 nm Wwave-
length of the frequency doubled Nd:YAG laser), but such data
are scarce. This scarcity required the use of optical data
measured with broad bandwidths or at wavelengths other than
532 nm and the formulation of the necessary conversion relations.

The third major task was the establishment of a data base
with common optical and measurement parameters. Data from sites
within a certain ocean region and collected during the same

optical season were averaged.

B. DATA REDUCTION AND CONVERSION

1. Irradiance Attenuation Coefficient (K) Data

The irradiance attenuation coefficient, K(A), is an
apparent, spectrally dependent optical property that measures
the extent to which diffuse downwelling daylight diminishes

exponentially with depth in water. Thus,

- u oKV 2
H, = Hee

where: Ho = golar irradiance at sea surfaces
H, = downwelling irradiance at depth Z
2 = depth of measurement

K(\) = irradiance attenuation coefficient*

*
Normally (A) will not be written, as it will generally be
assumed that K is for a specific wavelength.
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Depth averaged values of irradiance attenuation co-
efficients (K) were required. Data were usually obtained in
percent transmissions (3T = 100 Hz/Ho) for a series of depths.
To obtain a depth-averaged value, K, for the entire water column
the following equation was used in a linear regression using

the method of least squares:

ln(Tn) = ln(Hz/Ho)n = -Kz,

n = index of data pairs
R in units of m ! was the slope of the straight-line model with
depths, zZ. in meters as the independent variable and the corre-
sponding transmissions, Tn’ as the dependent variable.

| Ideally, irradiance attenuation data used for this study

should have been measured at X = 532 nm. However, few such data
were found and irradiance data at other wavelengths had to be
used. Most of these data were taken with irradiance meters
having a photopic response with a peak transmission near 555 nm.
The broad bandwidth of a photopic response coupled with the
water's selective absorption by wavelength with increasing depth
yields an effective response which is shifted towards the
wavelength of maximum transmission for the given water. For
this reason photopic K measurements were considered useful.

Other K measurements used in this study were obtained
with a quantum irradiance meter. A quantum meter is normally
sensitive in the 350-700 nm bandwidth interval and has a spectral
energy sensitivity directly proportional to wavelength (Jerlov,
1976). To convert from guantum values, K(y to K the curves of

Figs. 7 and 8 (Jerlov, 1976) were used. Given gquantum transmission
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measurements at a station, Fig. 7 was used to determine a water
type. Figure 8 was then used to determine the K/KQ ratio.

This ratio was then multiplied by the depth—-averaged quantum
irradiance attenuation coefficient (ﬁQ) to obtain the irradiance
attenuation coefficient (K). Again the broad bandwidth of the
quantum meter becomes narrowed to a green band withdepth in

coastal waters.

2. Beam Attenuation Coefficient (C) Data

The beam attenuation coefficient, C(A), is an inherent,
spectrally dependent, optical property that characterizes the
attenuation due to absorption and scattering by a collimated
beam of monochromatic light traversing a fixed path=length of
homogeneous water. Thus,

-C(\)r

Ft = Fo e

where: F

o initial radiantpower from projector

Fy

r = path length of measurement

residual radiant power measured by receiver

C(A) = beam attenuation coefficient*

Depth averaged values of beam attenuation coefficients (C)
were computed for this study. Data were-usually expressed in
percent transmission per meter, 3T = 100 Ft/Fo, for a series
of depths. To obtain a depth-averaged C for a water column,
numerical integration of the transmittance profile with depth
was performed. First, the water column at each observation
station was divided into layers so that each beam attenuation

measurement was at the center of that layer. Two exceptions to

*
Normally (%) will notbe written as it will generally be
assumed that C is for a specific wavelength.
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this procedure were the surface and bottom layers, because layer
boundaries between measurements were kept equidistant. Second,
each layer was assumed to contain homogeneous water, and the

beam attenuation coefficient was calculated for each layer using

the equation:
C_ ==ln(F_/F.) [m }]
n t’ %o

Third, the transmittance of the entire water column was calcu-

lated using an iterative procedure:

Ty = Thoy ©XP (-C 1))

where Cn = coefficient for the layer (m-l) in question

r, = width of the layer (m) in question
Tn-l = incoming transmission to the layer in question

and outgoing transmission of the prewvious

layer.
T, = outgoing transmission of the layer in question
and incoming transmission to the next layer.
T, = 100%

n = number of layers

Fourth, the depth averaged C was calculated by using the equation:

c = -1/r, 1n (T/100)

where C = depth averaged beam attenuation coefficient (m‘l)
r, = water depth at the station (m)
T = final Tn of previous equation
Not all the beam attenuation data used for this study
were measured at y * 532 nm. Beam attenuation data obtained for
Oregon coastal waters (Pak, 1979) were measured at 660 nm and
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had to be converted. A procedure to convert this data to 532 nm
was formulated using data collected by Zaneveld, et al. (1978)
in Monterey Bay, California. They used a spectral beam trans-
missometer that simultaneously measured at six wavelengths at
various depths. From these beam attenuation data those for

45 stations at three wavelengths (500, 550, and 650 nm)

measured at six different depths (0-1, S, 10, 20, 40, and 60
meters) were selected for this study. Linear regression models
were computed (x, y: y = mx + b) for the following sets of
variables: [C(650), C(500)], [C(500), C(650)], [C(650), Cc(550)],
and [C(550), C(650)] at each depth. Table I summarizes the
procedure followed in computing a mean slope (m) and a mean y-

intercept (b) to obtain the two equations:

C(500) 1.12 C(650) - 0.42

C(550)

1.09 C(650) - 0.35

The final equation, obtained by interpolating between the above
two equations, was used to convert C(660) to C(532).
C(532) = 1.10C(650) - 0.37

where C(650): 0.425 < C(650) < 2.00 [m 1]

Beam attenuation coefficients were converted to irradiance
attenuation coefficients using a relation computed by Shannon
(1975) for C(532).

K =0.2C + 0.04 [m Y]
where C: 0.11 < C < 1.6 [m ]

3. Secchi Depth (zs) Data

Most of the optical oceanographic measurements used were
Secchi depths. This is the depth at which a white Secchi disc,
usually 30 cm in diameter, lowered into the sea and viewed from
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directly above,disappears from view. Unfortunately, the proce-
dure has never really been standardized (Tyler, 1968; Williams,
1968; Holmes, 1970). Factors affecting the visibility of a
Secchi disc include solar altitude, cloud cover, sea surface
reflection and refraction, ship shadow, water color, observer's
visual acuity, and height above the water surface (Tyler, 1968).
Thus, Secchi disc measurements are somewhat subjective and
imprecise.

As are the beam and irradiance attenuation measurements,
the Secchi disc measurement is épectrally dependent. For the
purpose of this study, the observers should have worn eye
glasses with, for example, Wratten 61 filters (Williams, 1968).
Again, such spectrally homogeneous data are not available.
Williams (1968) investigated the relative response of the
photopic eye (555 nm peak response) with and without a Wratten
#61 filter (dominant wavelength 530 nm). Because of the
selective absorption with depth of ocean water, the errors
generated in using the photopic Secchi measurements were not
thought to be of significance for this study.

Secchi depth measurements were converted to irradiance
attenuation coefficients by methods based on geographic
region. Formulas published by Poole and Atkins (1929), Graham
(1966) , Otto (1966) , and Holmes (1970) were not considered ade-
quate for this study because of poor statistical procedures or
because the data were obtained in a different type of water.
Instead, data from various sources were used to develop regional

formulas to convert zs to K.

28

e - _ L - -, Y




The conversion formula used for Eastern Pacific coastal
waters was based on photopic irradiance and Secchi depth data
published by Callaway and McGary (1959) and Holmes (1970).

The data selected from Callaway and McGary were from 19 stations

approximately 150 nautical miles off the U.S. coast and north of

35°N latitude (Table II).

Added to these were 13 stations in

Goleta Bay near Santa Barbara, California, observed by Holmes.

These 32 stations were used and processed in the following

manner.

First, the Callaway and McGary irradiance attenuation

data were transformed to a depth-averaged value for the same

water layer as the Secchi depth measurement. This value (RS)

was computed by using only those irradiance transmission values

which were measured or interpolated at depths equal to or
shallower than the Secchi depth.
late is from these transmission values was the same linear
regression technique mentioned in Section III.B.l.
irradiance data were already in the correct form.

linear regression models were used to compute conversion

formulas.

The procedure used to calcu-

The Holmes

Second, two

The first linear regression model used the Secchi

depth reciprocal (Zs-l) as the independent variable and Rs as

the dependent variable.

Ks = 1,21 Zs

1 4 0.06 [m1]

95% confidence interval
m=1.21 + 0.10
b=10.06 + 0.02

r=,98

29

The equation obtained was:




used.

the K

The final conversion

cruises.

Q

1
s

95% confidence interval

m=0.78 + 0.07

z2 ~ =0.78 Rs -0.04

with Rs‘ The equation obtained was:

[m

b =-0.04 + 0,02

r= .,98

equations:

Ks = 1.252s

1

+ 0.05

where Z_: 1.9 <z, < 32

[m

[m]

-1

_1]

]

In the second linear regression model zs'l was interchanged

formula used is the mean of the above two

Figure 9 is a graph of the data points and the regression lines.

The conversion formula used for the westernGulf Coast

waters (Longitude > 89.5°W) was based on data published by
Kamykowski, et al. (1978), quantum irradiance and Secchi depth
data for one station off Texas observed on four different

Eleven of the twelve published measurements were

First, the data were transformed from quantum irradiance

to K by using Figs. 7 and 8 from Jerlov (1976).

Ks = 1.142s

95% confidence interval

III summarizes the results.

1

+ 0.04

m=1.14 + 0.39
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were computed resulting in the following equations:

]

transmission to depth-averaged quantum irradiance attentuation
coefficients for the same layer of water as the Secchi depth

measurements. Second, these coefficients were converted from

Table

Third, linear regression models




b = 0.04 + 0.05

r = ,91

z,”l = 0.73F, - 0.01 [n"!]
95% confidence interval
m=0.73 + 0.25
b = -0.01 + 0.05
r= .91
The final conversion formula used is the mean of the above two

equations:

1 -1

+ 0.03 [

K, =1.26 z ]

where ZS: 3.5 < 2g < 26 [m]

Figure 10 is a graph of the data points and the regression lines.
The conversion formula used for the Eastern Gulf coastal

waters (Longitude < 89.5%W) was computed by Shannon (Witt, et al.,

1976) from optical measurements taken in the West Pacific and

Eastern U.S. coastal waters.

- - : -1
Ry = 1.15 z.°1 + 0.03 [m™)
r=,95

where Z_: 4 < Zg < 43 [m]

The Rs data used were measured with two types of irradiance
meters--photopic response or a peak response at 533.5 nm

(?itt,_1979); This formula was determined by a linear re-

1

gression model with 2. = the independent variable and is the

dependent variable (Shannon, 1979). The weakness of this

1

equation was that zs' as the independent variable was assumed

to be error free.
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The Poole and Atkins (1929) data were examined due to

the wide use of their formula,

1 -l]

K=1.7 Zg [m

Poole and Atkins used an irradiance meter with a photopic response

and made fourteen series of observations mostly at one station in

the English Channel over the course of one year. An average K was

calculated for the surface water layer (0-20 m) for each series,

| and this was multiplied by zs, giving the product RO-ZO zs.

Poole and Atkins then found the mean value of the fourteen RO-ZO Zg

products to be 1.7. The same Poole and Atkins data were used

to recalculate a formula using linear regression and to verify

the conversions of this thesis. The two computed linear regression

equations are:

- -1 -1
Kg_po = 1.11 2.7 +0.04 [m )

95% confidence interval
m=1.11 + 0.35 !

b=20.04 +

0.03

r= .90

zs'1 =0.72 K -0.01 [m 1]

0-20

95% confidence interval

ms=
b =
r =

The mean equation from

where zs: 6.5

Kg_po = 1.25 2,

0.75 + 0.22
-0.01 + 0.03
.90

the above two is:

l4o.03

$2%25¢< 22 [m]

Figure 11 is a graph of the data points and the regression lines.
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The close agreement between these equations verified
the conversion formulas used to estimate the irradiance
attenuation coefficient from the Secchi depth. Table IV
summarizes the regression equations, and Fig. 12 shows the

final conversion formulas.

C. REMOTELY SENSED DATA

Three types of satellites are able to provide data that
indicate the optical quality of ocean waters: Landsat series,
NOAA series and Nimbus 7. Selected imagery from Landaat and
NOAA series were examined.

Landsat data have been used with some success by numerous
investigators studying currents tagged by suspended sediments,
plumes, and dispersal patterns of suspended sediments (Jarman,
1973; Pirie and Steller, 1973; Hunter, 1973; Erb, 1974; Carlson,
et al., 1975; Maul and Gordon, 1975; Rouse and Coleman, 1976).
The most successful studies have used image enhancement processes
with in situ data simultaneously collected for calibration
purposes. However, such enhancement was not available for
this study, and only B&W imagery as received from the EROS data
center of the U.S. Geological Survey were used.

For the coastal region off Oregon MSS4 and MSS5 Landsat
imagery taken during the March 11, March 28, May 12, and May 13,
1975, overpasses were compared to beam attenuation data (A =
660 nm) collected on April 23-May 1, 1975 by Pak and Zaneveld
(1977) . No noticeable correlations were observed.

For the region off Texas MSS5 Landsat imagery taken during

the November 12-13, 1975, and May 28-29, 1976, overpasses were
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compared to beam attenuation data (A = 528 nm) published by
Berryhill, et al. (1976) and collected on November 15-21, 1975
and May 21-25, 1976, respectively. Turbidity patterns were
much more noticeable for the Texas imagery and some trends
between the satellite imagery and the beam attenuation data
were observed. These turbidity patterns observed in the
Iandsat imagery were used as an aid in contouring the Texas
beam attenuation coefficient data. Shideler (1979) extensively
examined the data of all six cruises published in Berryhill,

et al. (1976) and Berryhill, et al.(1978) with the related B&W
Landsat imagery and indicated that turbid water masses through-
out the inner shelf depths (less than 45 m) were apparent in
the imagery.

The NOAA-3 imagery for selected days throughout 1975 were
used to observe upwelling off the U.S. West Coast. The relation-
ship of upwelling to seasonal variation of optical properties
off the Northwest Coast is discussed in the next chapter.

Coastal 2Zone Color Scanner (CZCS) data from the Nimbus 7
satellite were not available at the time of the writing of this
thesis. However, it is mentioned here because of its enormous
potential as an optical data source for the marine environmeni.
Data can be obtained on magnetic tape, CRCST (Calibrated
Radiance, Pigment, Diffuse Attenuation Coefficient, and Tempera-
ture Tape), or film format. The irradiance (diffuse) attenuation
coefficient is a computer parameter obtained on tape or film
image. Since this scanner views a swath 1566 km wide, K data
for enormous ocean areas could be obtained (Goddard Space Flight

Center, 1978).
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D. DATA PROCESSING

Each measurement datum was keypunched onto a standard 80-
character computer card along with its latitude, longitude,
date, bottom depth (when available), measurement unit (meters,
feet, etc.), converted K value, and the source for the data.
The latitude and longitude were given to a tenth of a minute.

The data on magnetic tape from NODC, EPA and Texas
Natural Resourceé, required special processing due to limitations
on processing resources and the wealth of data measurements
recorded over relatively small areas. The NODC tape data was
punched one card per measurement. The EPA "Storet" tape gave
monthly data covering a span of three years. These data were
averaged according to monthly means per station. The Texas
Natural Resources tape was averaged by predetermined optical
seasons (detailed in Chapter 1IV.C) per station.

These data cards were then used as input for the plotting
program. A copy of this program is included in Appendix B.
The data points were plotted on a Mercator projection at the
same scale as available charts of the area. The plots were
then overlayed onto the charts to trace the coastlines and
bathymetric contours. Because of the irregular spacing
of the data, a spatial averaging routine was used for areas
where a dense spacing of points would have caused values to
overprint one another. This was accomplished by a straight
averaging of all points which were spaced within one plotted
number width of one another. Contours were developed for
plots by using the smallest plottable number, which was .04

inches for the NPS Versatec Plotter. These contours were

35

—



== T

then transferred using a light table to a same scale plot which

used a number size of .10 inches, the minimum reproducible size
for thesis presentation. Therefore, the data contours represent
an averaging of values plotted within 1.9 miles of one another
on the West Coast, and within 3.4 miles on the Gulf Coast.
However, data values on the final plots represent an averaging
of values plotted within 4.7 miles of one another on the West
Coast and within 8.5 miles on the Gulf Coast plots. No averaging
was performed for individual data points positioned beyond
these limits. Figures 14 through 16 show the locations of all
the data points used in the plots.

For some months data were so sparse that meaningful plots
could be obtained only by dividing the year into seasons.
The determination of these seasons is the topic of the next

chapter.

36




IV. TEMPORAL VARIATION OF OPTICAL PROPERTIES BY REGION

A. INTRODUCTION

The months of lead time required for laser bathymetric
mission planning make it important to determine which times
of the year provide optimum water clarity. The sparcity of
data for certain months leads to a grouping of months into
seasons.

Seasonal trends were estimated by comparing the monéh-to—
month variations of oceanographic factors known to affect
turbidity with the optical measurements of those few stations
which provided monthly optical data. Oceanographic parameters
which correlated best with the optical measurements were used
to delimit the seasonal boundaries during those months with in-
sufficient data. Secular variations were not studied due to
the lack of repetitive optical measurements at the same location
over a number of years.

Coastal water turbidity can be influenced by physical,
chemical, and biological processes occurring both in the water
column and in adja;ent land areas. A major contributor to
turbidity is particulate matter produced by land runoff and
plankton, especially in areas of upwelling. Phytoplankton
blooms can produce sudden increases in turbidity, which may be
closely related to upwelling which in turn may be seasonal.

Sea surface temperature measurements can be useful in identify-
ing areas of upwelling, and salinity measurements have been

used to trace the outflow from large rivers such as the Columbia

37




River (Pruter and Alverson 1972). York in (1974) demonstrated

an inverse relationship between Secchi depths and Bakun's (1975)
upwelling index. This upwelling index was helpful in determining
optical seasons for the west coast of the U.S. Other factors
such as large storms may increase turbidity over shorter time
frames.

Data for the northwest coastal waters of the U.S. were
assembled for the region from 42°N to 49°N out to a depth of
200 m. The California coast was not covered due to the narrowness
of the Continental Shelf there.*

Data from the Gulf of Mexico were divided into two groups,
one for the area west of 89° 30'W and the other to the east of
that line. The Western Gulf region comprised that area along
the.coasts of Texas and Louisiana out to a depth of 200 m. The
Eastern Gulf region started at 24°N, 80°W and included the
southern and western coastsof Florida and the coasts of Alabama

and Mississippi out to a depth of 200 m.

B. NORTHWEST COAST

Discharge from the Columbia and other rivers and seasonal
upwelling along the coast dominate the turbidity observed along
the morthwest coast of the U.S. Upwelling affects most of the
coast during the summer and the river discharges produce turbidity
plumes which affect the coastal areas near river mouths. Brown
(1973) correlated Secchi depths for the northwest coast with

other simultaneously measured oceanographic parameters and found

*Por the California coast there are a number of optical obser-
vations to which the reader can refer. References to California
data which have either beam attenuation or diffuse attenuation
measurements may be found in reports by the Allan Hancock Foundation

(1963) ; Drake (1972); Frederick (1970); Karl (1976); and Winzler
and Kelly (1977).
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coefficients of .610 correlation with water depth, -.598 with
observed Forel-Ule color codes, -.591 with Si04 and .504 with
salinity. Other parameters such as surface temperature, density,
and oxygen levels did not show as good correlations.

Bakun (1975) has attempted to quantify upwelling through
the use of an upwelling index which is an estimate of the com-
ponent of computed Ekman transport directed offshore. This
transport is calculated from daily mean surface atmospheric
pressure data. Figure 13 (Bakun, 1975) shows the upwelling
indices computed by month versus latitude for the western
coast of the U.S. Shaded areas represent upwelling in units of
cubic meters per second per 100 m of coastline. Negative values
indicate downwelling. The figure was compiled from an average
of 20 years of wind observations. Upwelling occurs as a result
of change in wind patterns from southwesterly in winter to
northerly in summer. Although the upwelling is not constant
but varies with wind variations, this same annual cycle of
summer upwelling has been observed over the course of many
years.

The Columbia River is the only major river source of
turbidity along the Northwest coast. It ranks second among
U.S. rivers in volume of discharge at its mouth with an average
of 640,000 cubic feet per second (or approximately 7,300 m3/sec)
(Boone 1978). Peak discharges occur from May to July with
lowest flows from August to October. Surface currents along
this coast flow southerly from May through September, and northerly
from mid-November through February (U.S. Navy Hydrographic

Office 1967). This movement pushes the plume of the Columbia
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River to the south during the months of peak discharge. Most

of the remaining streams of the Northwest coastline originate

in the Coast Range and produce highest stream flows in February
through March and lowest flows from August to September (Geraghty
1973).

The preceding oceanographic factors along with K data from
the area (Small, 1979) are summarized in Table V. The table
shows upwelling from May to September, also the period of peak
discharge of the Columbia River. Upwelling and river discharge
act together to assure higher K values at this time. A season
of relatively lower K was established from October to January
when oceanic and coastal waters meet near shore and little or
no upwelling occurs. February through April shows variability
with upwelling occasionally establishing itself for short
periods. Seasonal plots, figures 17 through 36, were generated
using this division scheme.

Figures 17 through 25 show Secchi values obtained for this
area. Of particular interest is the delineation of the Columbia
River plume. Figure 21 shows the 5 m contour being extended
south across the 46° parallel towards deeper waters. Figure 22
shows the same contour bulge as much smaller and directed northerly
with the current at that time of year. Figure 20 shows the 5 m
contour bulging straight out from the river mouth during the
time of year when the surface currents are weak and variable in
direction.

Figure 26 shows all the beam attenuation measurements obtained
for the Northwest coast for all seasons. Figure 27 shows all

the irradiance measurements obtained for all seasons.
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Figures 28 through 36 show all measurements after their
conversion to irradiance K according to the methods detailed
in Chapter 3. Due to the abundance of Secchi measurements as
opposed to any other type, these plots mainly reflect the

trends indicated in the raw Secchi plots.

C. WESTERN GULF OF MEXICO

Winter storms and their associated winds and resulting
high seas appear to be the most efficient mechanism in
generating turbidity in the Western Gulf. Besides being able
to resuspend bottom sediment, these storms apparently cause
efficient tidal flushing of local estuaries and lagoons as
suggested by Shideler (1979). These lagoons are laden with
sediments from local rivers. However, peak discharges of
turbid water from these lagoons is not related to high stream
flows. Instead, the majority of sedimentis trapéed by the
lagoons until storm conditions can aid high tides in dis-
charging it.

The discharges of the Mississippi and Atchaflaya Rivers
dominate the turbidity regime along the Louisiana Coast.
Peak discharges for both rivers are from March to May, with
lowest stream flows from September to November (Perret, et al
1971). These flows dominate the nearshore coast of Louisiana
with diminishing effect towards the outer continental shelf.
Other stream flows show peak discharges from January to May
and lowest stream flows from August to October.

Coastal currents are generally weak (less than 1 m/sec

over 95% of the time) but do play a role in directing turbidity
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flows. From October to June the longshore currents are from

the east and flow west, then south, along the Texas Coast (U.S.
Naval Oceanographic Office, 1972). This causes the Atchaflaya
and most of the Mississippi water to follow the Louisiana coast
and keep turbidities high in this area. These currents also
direct discharges from Texas lagoons to follow nearshore
shallow waters. From‘July to September a longshore current
from the south invades the southern Texas coast until it meets
the previously described current at about 29° latitude. In-
cursions of the Loop Current of the Gulf of Mexico onto the
continental shelf have been observed (Shideler, 1979). This
shoreward incursion of deep water confines turbid coastal
waters to the shallow inner shelf and results in lower turbidities
elsewhere.

Upwelling, which plays an important role in turbidity levels
for the Northwest coast, is not thought to be important for the
Western Gulf. Winds from the south to southwest (for Texas coast)
and from the west (for the Louisiana coast) which would be
needed to produce an offshore Ekman transport are infrequent
and generally weak.

Berryhill, et al. (1976) report finding a prevalent two-layer
turbidity structure in their study of the South Texas outer
continental shelf. This structure consisted of a nepheloid layer
below a less turbid layer. This nepheloid layer varied in both
thickness and distribution but in general became thickest toward
the outer shelf. This type of structure casts doubt on the
validity of the use of Secchi measurements to obtain K for the
entire water column because they only indicate transparency

near the surface.
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Table VI illustrates the variables used in determining
optical seasons. Wind data were obtained from a Summary of
Synoptic Meteorological Observations (U.S. Naval Weather
Service Command, 1970). Sea heights were obtained from a
U.S. Naval Oceanographic Atlas (1972). Zooplankton counts
were obtaine§ from a study done by the Louisiana Wild Life
and Fisheries Commission (Perret, 1971). Secchi transects
were from a study of the South Texas outer continental shelf
(Kamykowski, 1979).

A season from November to February was chosen to represent
that time of year when storms are most prevalent and an efficient
tidal flushing of lagoons is thought to occur. There is a varia-
ble season from March to May when winds are occasionally strong
and outflows from the larger streams are high. June to October
is the third season, when winds and streamflow are lowest. This
third season is thought to consistently provide the best overall
water visibility. Hurricanes which occur during this season
could raise turbidities substantially, but are infrequent and
usually short term in their effects.

Figures 37 through 39 show Secchi measurements made in the
Western Gulf. Within the lagoons of Texas and the nearshore
area of Louisiana, visibility is most related to streamflow
and therefore March to May is generally the period of shallowest
Secchi depths and when streamflows are highest. June to October
is generally that period when the deepest Secchi depths were
found, but a sparcity of data during these months makes compari-
sons difficult. November through February generally are the
months when highest turbidities are encountered in the offshore

deeper waters.
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Figures 40 and 41 show the only beam attenuation data col-
lected for this area. The more turbid waters of November to
February of the two figures provide a further indication of
tidal flushing of lagoons during this stormy season.

Figures 43 through 45 show the conversion of all the data
to the common parameter K. Secchi depths less than 2m wetre not
dealt with by the Z to K conversion formula which was derived
from measurements deeper than 2 m. Therefore, the Texas
lagoon measurements do not appear on these figures. These
plots display the same seasonal variations mentioned before.
Shideler (1975) notes that secular variations were thought to
be related mainly to annual stream flow variations and storm

occurrences for those years.

D. EASTERN GULF OF MEXICO

The eastern Gulf data indicate similar mechanisms of
turbidity generation as were present in the wWestern Gulf. The
main differences are due to the appearance of some upwelling
during winter months and a change of the months of highest
stream flow along the Florida coast.

Alexander, et al. (1977) attribute mixing of the water
columnover theeasternGulf'scontinental shelf to wind stress
which can be linked to the frequency of low pressure disturbances
(storms) crossing this area. 1In winter when storms are most
frequent the water column was observed to be unstable and well
mixed. By contrast, in summer and fall the water column is
stable with established thermoclines and haloclines.

Alexander, et al. (1977) also noted that the passage of Hurricane
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Bloise did not raise turbidity levels to the degree that per-
sistent winter storms had. Also, the rise in turbidity caused
by the hurricane disappeared after one week.

Monthly Ekman transports for 2 degree squares in the
Eastern Gulf have been computed by Ichiye, et al. (1973). Their
results show transports to be lowest from June to August with
averages less than 3,000 gm/cm-sec. Transport is generally
alongshore except from December to February when offshore
transports result from scattered areas of upwelling along the
Florida coast, especially near De Soto Canyon. In other months
there may be occasional periods of offshore transport but of
smaller magnitudes.

Surface currents generally flow in a northwesterly direction
along the coast in the nearshore areas. This directs Mississippi
River flow away from the Eastern Gulf except from April to
September when a reversal in flow direction occurs from the
Mississippi River mouth to the Florida panhandle. 1Incursions
of pockets of Mississippi outflow were observed by Alexander,
et al. (1977) along with Loop Current eddies which had intruded
onto the continental shelf during these summer months. No Loop
Current intrusions were found during other seasons.

Table VII summarizes the main parameters used to delineate
optical seasons. Wind mixing occurring during winter storms
and a simultaneous increase in upwelling makes January to March
a season of highest K. Lowest K values can be expected from
June to September when the water column is most stable and
clear water from the Loop Current intrudes upon the outer

shelf. Exceptions to this occur along the Mississippi, Alabama,
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and western Florida coasts where turbid Mississippi River out-
flows make K higher. The two remaining seasons are transition
periods where K is variable and less predictable. Stream flows
other than the Mississippi do not appear to influence turbidity
levels greatly.

Figures 46 through 53 show the Secchi measurements obtained
for the Eastern Gulf. Figures 54 through 59 show beam and
irradiance attenuation measurements and figures 60 through 66
show all measurements converted to irradiance K. Overall,

these plots show the lowest K values encountered in this study.
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V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The present and near-future water penetration capability
of lase; systems is limited to about four attenuation lengths
(Enabnit, 1979) as was discussed in Chapter 11 (see also Fig. 6).
Seasonal K4 - i1lues were plotted in nineteen figures for Pacific
Northwest and Gulf coastal areas. These figures indicate where
and when laser bathymetry systems would be successful, given
the Kd<4 criterion. These seasonal Kd values were derived from
optical data collected over different years. However, inter-
annual variations may change the utility of laser bathymetry
systems in a particular area.

In the coastal areas of Oregon and Washington laser bathy-
metry would probably not be successful at any time over signifi-
cant areas as is shown in Figures 67 to 75. A Kd value of ten
was contoured (the lowest contourable value) as an indicator
of possible areas surveyable by laser. The area within the
Kd=10 contour is small for all seasons; the even smaller area
with a Kd<4 is too small for practical laser hydrographic opera-
tions.

In the Western Gulf, limited areas are candidates for laser
bathymetry as shown by Figures 76 to 78. The southern half of
Laguna Madre, Texas, is surveyable by laser bathymetry from
November through February. The area from Matagorda Bay to
Sabine Pass off Texas is surveyable all year up to depths of

10 to 20 fathoms as indicated by the Kd=4 contours. West of the
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Mississippi Delta, possibly to Sabine Pass, a strip from outside
local estuaries and bays to the 10-fm depth contour is available
to laser bathymetry from March to October.

The Eastern Gulf coastalarea is the area best suited to
laser bathymetry as indicated in Figures 79 to 85 by the Kd=4

contour. Off Florida from Panama City to the Florida Keys, an

area of 30,000 nmi2 bordered by the 30-fm depth contour may be

surveyed by laser bathymetry during June through September,

and a reduced area bordered by the 20-fm depth contour all year.

This 30,000 nmi?

area alone represents 15 years of work for one
laser system and represents a costs savings of $69 million (1977
dollars) over launch/sonar surveys. From Panama City to the

eastern Mississippi Delta an area of 8,800 nmi2

bordered by
the 20-fm depth contour is surveyable from October through

i December.

B. RECOMMENDATIONS

1. More optical measurements, especially irradiance and
beam attenuation data, should be collected throughout
the year in U.S. coastal waters.

; 2, More simultaneous measurements of Zg, K, and C at the

‘ same wavelength should be taken and more investigations

of the relationships between them should be made.

Universal relationships should not be expected due to

regional variation in suspended particles and yellow

substance (Gordon and Wouters, 1978) and, therefore,

such studies should be regional.
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Investigators should send optical measurements to the

National gceanographic Cata Center, especially measure-
ments made in the Gulf Coast area. NODC should establish
irradiance and beam attenuation data categories as part
of the Ocean Stations Data Base.

This thesis studied seasonal variation of marine optical
properties in U.S. coastal waters; others should investi-
gate long term trends and their cause.

Investigators should always state the wavelength at which
their optical data were taken.

Prior to the commencement of laser hydrographic survey
operations, Nimbus 7-C2CS data for the areas of interest
should be examined and used to update the figures pre-
sented here.

This thesis did not examine the bottom reflectivities of
coastal waters because of their generally relatively minor
effect compared to attenuation lengths as a limiting
parameter for laser bathymetry operations. However,'in
areas of marginal utility forlaser bathymetry, bottom
reflectivity may become significant. This suggests
further study of this effect is needed.

The National Ocean Survey should consider the west coast
of Florida for airborne laser hydrographic operations

due to the favorable marine optical environment there.
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APPENDIX A

DATA SOURCE OF IN-SITU OPTICAL MEASUREMENTS
IN COASTAL WATERS
Data Source: CDS Data Base
Institution: Texas Natural Resources Information System
Geographic Area: Texas
Date of Tape Generation: May 1979
Data Range: 1968-77
Optical Data Type: zs
Number of Data Observations: 14,232
Data Reduction_Procedures: Data was on magnetic tape.
Converted to K by methods of Section III.B.3.
Data Source: SD-2 Oceanographic Stations (Master Records)
Data Base
Institution: National Oceanographic Data Center
Geographic Area: Primarily Oregon and Washington
Date of Tape Generation: March 1979
Data Range: 1952-74
Optical Data Type: Zs
Number of Data Observations: 1329
Data Reduction_Procedures: Data was on magnetic tape.
Converted to K by methods of Section III.B.3.
Data Source: STORET Data Base
Institution: Environmental Protection Agency
Geographic Area: Florida
Date of Tape Generation: June 1979
Data Range: 1966-79
Optical Data Type: zs
Number of Data Observations: 3,000

Data Reduction Procedures: Data was on magnetic tape for
selected stations off Florida. Converted to K by methods
of Section III.B.3.

Investigator: Barret, Barney B.

Data Source: Barret (1971)

Institution: Louisiana Department of Wildlife and Fisheries

Geographic Area: Louisiana
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Date of Data Collection: 1968-1969

Optical Data Type: zs

Data Reduction Procedure: Computed K from Zs by method
outlined in Section III.B.3.

Investigators: Barret, Barney B. et al i
Data Source: Barret et al (1978) f
Institution: Louisiana Department of Wildlife and Fisheries
Geographic Area: Louisiana

Date of Data Collection: 1974-76

Optical Data Type: 2

s
Data Reduction Procedure: Computed K from Zg by method outlined

in Section III.B.3.

Investigators: Berryhill, Henry L., Jr., et al

Data Sources: Berryhill et al (1976) and Berryhill et al (1978)

Institution: U.S. Geological Survey

Geographic Area: Texas

Date of Data Collection: 1975-1977

Optical Data Type: C

Instrument: Martek Transmissometer (528nm)

Data Reduction Procedure: Integrated C computed by method
outlined in Section III.B.2 for 28 stations sampled six
different times. Most stations had the beam transmission
measurements (surface, middle, and bottom) per profile but
some lacked bottom measurements. For these stations the

middle value was used to the bottom depth. K was then
computed from &.

Investigators: Carder, K. L., and Haddad, K. D. j
Data Source: Carder and Haddad (1979) 1
Institution: University of South Florida

Geographic Area: Mississippi, Alabama, and Florida

Date of Data Collection: 1976-1978
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Optical Data Type: C

Instrument: Hydro Products Transmissometer (550nm)

Data Reduction Procedure: The original data were given as
suspended particles beam attenuation coefficient (C )
contours on profile figures. The use of this data P
required special processing. First, values of C_ had to be
picked off the figures for the C_ vs depth profi?e at each
ocean station. Second, Cp was cBnverted to C for each layer
by using the relation C_ ¥ .06935 = C (Carder and Haddad,

1979) . _Third, the methBds of Section III.B.2.were used to
obtain K.

Investigator: El-Sayed, Sayed 2,

Data Source: Unpublished Data (El-Sayed 1974)
Institution: Texas A&M University

Geographic Area: Gulf of Mexico

Date of Data Collection: 1971-73

Optical Data Type: 2

s .
Data Reduction Procedure: Computed K from Zs by method

outlined in Section III.B.3.
Investigators: Godcharles, Mark F. and Jaap, Walter C.
Data Source: Godcharles and Jaap (1973)

Institution: Florida Department of Natural Resources Marine
Research Laboratory

Geographic Area: Florida

Date of Data Collection: 1970-71
Optical Data Type: zs
Data Reduction Procedure: Computed K from Zs by method

outlined in Section III.B.3.

Investigators: Gordon, Howard R. and Dera Jerzy

Data Source: Gordon and Dera (1969)

Institution: Institute of Marine Sciences, University of

Miami

52

L ;‘



11.

e

12,

13.

Geographic Area: Florida

Date of Data Collection: December 1967
Optical Data Type: K

Instrument: Irradiance meter with a selenium photocell
covered by a 525nm filter and a diffuse screen.

Data Reduction procedure: None

Investigator: Grady, John R.

Data Source: Grady (1979). Five Cruises of GUS III
Institution: National Marine Fisheries Service
éeographic Area: Louisiana and Texas

Date of Data Collection: Jan-May 1966

Optical Data Type: 2

s
Data Reduction Procedures: Zs converted to K by methods

of Section III.B.3.
Investigators: James, W. P., et al.
Data Source: James (1977)
Institution: Texas A&M University
Geographic Area: Florida
Date of Data Collection: 2/76, 3/76, 7/76
Optical Data Type: K, 2

S

Instrument: Kahl Scientific Co. Universal Radiometric
Submarine Photometer (Green filter)

Data Reduction Procedures: K data reduced to a depth_averaged

by method of Section III.B.1l. Zs data converted to K by
method of Section III.B.3.

Investigatars: Joyce, Edwin A. and Williams, Jean
Data Source: Joyce and Williams (1969)
Institution: Florida Department of Natural Resources

Geographic Area: Florida
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15.

16.

Date of Data Collection: 1966-69

Optical Data Type: zs

Data Reduction Procedure: Computed K from 2 by method
outlined in Section III.B.3. S
Investigators: Kamykowski, Daniel et al.

Data Source: Kamykowski et al (1978)

Institutions: University of Texas Marine Science Institute
Port Aransas Marine Laboratory

Geographic Area: South Texas
Date of Data Collection: 6/78~11/78
Optical Data Type: Quantum K, C, and Zs

Instrument: Lambda Photometer (quantum)
Martek Transmissometer (528nm)

Data Reduction Procedure: Quantum K reduced to K by procedure
outlined in Section III.B.l. Integrated C computed by method .
outlined in Section III.B.2. Quantum K_ and Z2_were used to :
compute the conversion formula, Z_ to K, for %he Western Gulf
Coast and the procedure is descriBed in®Section III.B.3. All
data Jor one oceanographic station.

Investigators: Manheim, Frank T.; Steward, Robert G., and
Carder, Kendall L.

Data Source: Manheim, Steward and Carder (1977).

Institution: University of South Florida

Geographic Area: Mississippi, Alabama, and Florida

Date of Data Collection: 1975-1976

Optical Data Type: C

Instrument: Hydro Products Transmissometer (550nm)

Data Reduction Procedures: C and K computed by methods of
Section III.B.2.

Investigatorg: McGrail, David W.; Huff, David; Jenkins, Stacy
Data Source: McGrail, Huff and Jenkins (1978)

Ingtitution: Texas A&M University
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17.

18.

19.

Geographic Area: Texas and Louisiana

Date of Data Collection: 1977

Optical Data Type: C

Instruments: Martek Transmissometer

Data Reduction Procedures: The data published were trans-
mittance profiles graphed for each ocean station. Thus,
inflection points were picked off and the methods of Section
IITI.B.2 were used to computer C and K.

Investigator: Oregon State University Cruises

Data Source: Unpublished data (Pak 1974)

Institution: Oregon State University

Geographic Area: Oregon

Date of Data Collection: 1968-1971.

Optical Data Type: 2

s
Date Reduction Procedure: Computed K from Z_ by method

outlined in Section III.B.3.
Investigators: Pak, Hasong and Zaneveld, Ronald V.

Date Source: Unpublished data (Pak 1979) Conclusions of
this data were published by Pak and Zaneveld (1977).

Institution: Oregon State University
Geographic Area: Oregon

Date of Data Collection: 8/74-5/75
Optical Data Type: C

Instrument: OSU Transmissometer (660nm)

Data Reduction Procedure: Computed C at 660nm converted to
C (532nm) , and converted to K by methods outlined in Section
III.B.2.

Investigator: Saloman, Carl H.
Data Source: Saloman (1974)
Institution: National Marine Fisheries Service

Geographic Area: Florida
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20.

21.

22.

Date of Data Collection: 11/70-9/71
Optical Data Type: zs

Data Re@uction.Procedure: Computed K from zs by method out-
lined in Section III.B.3.

Investigators: Saloman, Carl H. and Collins, L. Alan

Data Source: Saloman and Collins (1974)

Institution: National Marine Fisheries Service

Geographic Area: Tampa Bay, Florida

Date of Data Collection: 1/71-12/72

Optical Data Type: 2

Date Reduction Procedure: Computed K from zS by method
outlined in Section III.B.3.

Investigators: Small, Lawrence F. and Curl, Herbert, Jr.

Data Source: Unpublished Data (Small 1979). Conclusions
of this data were published by Small and Curl
(1968) .

Institution: Oregon State University

Geographic Area: Oregon

Date of Data Collection: 4/62-4/65

Optical Data Type: K

Instrument: Kahl Scientific Irradiance Meter (photopic)

Data Reduction Procedure: 1tone

Investigatofs: Stevenson, W. H., and Pastula, E. J.
Data Source: Stevenson and Pastula (1973)
Institution: National Marine Fisheries Service
Geographic Area: Mississippi Sound

Date of Data Collection: August 1972

Optical Data Type: 2

Data Reduction Procedure: Computed K from Z, by method out-
lined in Section III.B.3.
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TABLE II. DATA USED TO CONVERT SECCHI DEPTH TO IRRADIANCE
ATTENUATION (ZS TO Ks) FOR EASTERN PACIFIC COASTAL

WATERS
: Station Bgig Laﬁ?gﬁge Loﬁggtgde Zs (m) ks (m'])
49A 7/9 39° 59° 126° 38" 32 .0718
51 7710 40° 02! 127° 07" 32 .0363
61 715 44° s0° 126° 11° 22 1114
64 7723 4% 18 126° 38° 20 J117
65 7723 43° 51" 127° 22 32 .0708
66 7728 43° 43 127° 51° 32 . .0747
67 7726 43° 13 127° 12 26 .0903
83 7/30 39° 01" 126° 26° 28 .0674
88 8/4 38° s56° 1259 42 26 .0651
89 8/4 38° 57° 126° 10° 24 .0900
91 8/5 38° 14° 125° 40 20 .1096
92 8/5 38° 05° 125° 25 16 1327
93 8/5 38% 14" 125° 44' 22 .0938
95 8/6 37° 06" 125° 07° 24 .0999
, 9% 8/6 36° 58° 124° 56° 18 1291
g 98 8/6 360 45° 124° 33" 20 1340
101 8/7 362 45° 124° 3¢ 22 1123
102 8/8 36° 08' 123° 24 20 1151
| 103 8/8 35°% 19° 123° 23 10 .2577

by van Norden.
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Original station data from Callaway and McGary (1959); Es computed
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TABLE III. DATA USED TO CONVERT SECCHI DEPTH TO IRRADIANCE
ATTENUATION (2 s TO Ks) FOR WESTERN GULF COASTAL

WATERS
Local «~ K -
Date Time Z, (m)  Quanta K /KQ kg ()

6/29/78 1300 23.75 .0609 1.085 .0661
6/29/78 . 1700 20 .0909 1.06 .0964
7/24/78 1200 26 .0683 1.095 .0748
7/25/78 0800 19 .0587 1.08 .0634
7/25/78 1200 20 .0442 1.12 .0495
9/25/78 1345 4 .387 .975 .377
9/26/78 0000 3.5 .295 .975 .299
11/08/78 1200 g .233 .990. .231
11/08/78 1600 9 .83 .980 .180
11/09/78 0800 14 .187 .950 177

11/09/78 1200 14 .158 .950 .143

All observations at N 27° 34' Latitude and W 96° 50°
Longitude. Original station data from Kamykowski, et al.
(1978) ; Quanta KQ and Ks computed by van Norden and K/KQ

obtained from Jerlov (1976).
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COST PER UNIT AREA ($/NM?)
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AREA SURVEYED ANNUALLY (NM?)

FIGURE 1. LASER/SONAR COST COMPARISON, COSTS IN 1977 DOLLARS
(NOS, 1979).
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COASTAL TYPES

a)

1"35 7 9

o

OCEAN TYPES

o |[RRADIANCE ATTENUA(IION COEFFICIENT K(M™)
I

_.{

~—— OCEAN WATER
(JERLOV,1976),

i | 1 | 1

Q

FIGURE 3.

300 400 500 600
WAVELENGTH (NM)

700

SPECTRAL IRRADIANCE ATTENUATION COEFFICIENTS OF
DOWNWARD IRRADIANCE IN THE SURFACE LAYER FOR
JERLOV OPTICAL WATER TYPES (AVCO EVERETT RESEARCH
LABORATORY,

INC., 1978).
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SYSTEM ATTENUATION COEFFICIENT ¥ (M-)

L

S N N

_BEAM_ ATT COEF

— C— — — —— — —

DATE : 5 MAY 1979
PLACE: KEY WEST,FL.
SEA STATE :1

LASER POWER:50KW. _|
BOTTOM DEPTH:344FT

-] . S —_— A
IRRADIANCE ATT. COEF K=190M™
) I I (N N DU AR R B
4720 30 40 50 60 70 80 90
RECEIVER FOV (MRAD) -
SYSTEM ATTENUATION COEFFICIENTS AS A

- FIGURE 5.

FUNCTION OF RECEIVER FOV AND AIRCRAFT
ALTITUDE. DATA FROM KRUMBOLTZ (1979).
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IRRADIANCE ATTENUATION COEFFICENT K

SYSTEMS AS SPECIFIED BY IRRADIANCE
ATTENUATION LENGTHS TO THE BOTTOM.

EXPECTED PENETRATION OF DIFFERENT LASER



PERCENTAGE OF SURFACE QUANTA (350-700nm)
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- FIGURE 7

DEPTH PROFILES OF PERCENTAGE OF SURFACE
QUANTA(3£0-700nm) FOR DIFFERENT WATER TYPES
(JERLOV,197G)




FIGURE 8.
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THE RATIO OF IRRADIANCE TO QUANTUM IRRADIANCE
IN THE SPECTRAL RANGE 350-700 nm AS A FUNCTION
OF DEPTH IN DIFFERENT OPTICAL WATER MASSES
(JERLOV, 1976).
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FIGURE 9. LINEAR REGRESSIONS OF Rs AND Zs FOR EASTERN PACIFIC
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